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Abstract—An area of growing interest in PET imaging has
been that of incorporating increasingly more accurate system
matrix elements into the reconstruction task, thus arriving at
images of higher quality. This work explores application of an
analytic approach which individually models and combines the
various resolution degrading phenomenon in PET (inter-crystal
scattering, inter-crystal penetration, photon non-collinearity and
positron range), and does not require extensive experimental
measurements and/or simulations. The approach is able to produce
considerable enhancements in image quality. The reconstructed
resolution is seen to improve from 5.1mm-7.7mm across the
field-of-view (FoV) to ≈3.5mm nearly uniformly across the FoV.
Furthermore, phantom studies indicate clearly improved images,
while similar significant improvements are seen for the particular
task of Rb-82 cardiac imaging.

Keywords: Positron emission tomography, Image reconstruc-
tion, Image enhancement, Positrons, Compton scattering.

I. OVERVIEW AND MOTIVATION

In PET imaging, four processes are responsible for degrading

image resolution: positron range, photon non-collinearity, inter-

crystal scattering as well as penetration. Aside from improve-

ments to PET detection (hardware), different reconstruction

approaches have been proposed in the literature to model

the aforementioned factors, with the aim of improving image

resolution.

First, let us consider an image with J basis functions (usually
voxels) and a histogrammed dataset with I projection bins.
We then denote the system matrix as P=(pij)I×J , where each

element pij models the probability that an event generated in

voxel j is detected along line-of-response (LOR) i. Next, one
may decompose [1] the system matrix into three components

P = WGB (1)

Here, the matrix B=(bij)J×J is used to account for image-

based blurring effects, while the matrix G=(gij)I×J contains

the geometric probability terms relating each voxel j to an
LOR i. In addition, the matrix W=(wij)I×I can be used to

account for sensitivity variations (i.e. due to attenuation and

normalization) as well inter-crystal blurring effects.

An approach [2], [3] has been to model overall resolution

blurring entirely into the image-space component B of the

system matrix. This approach is very straight-forward to im-

plement, and produces images of higher quality. However, the
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method is somewhat ad hoc and in particular does not model
the varying degrees of inter-crystal blurring in the projection

space. The method is thus not suited to model the parallax

effect. An approach developed in [4] proposed the use of space-

variant blurring kernels to model this effect with some observed

improvements, nevertheless the fundamental issue remains to

be the fact that this approach does not allow modeling angular-

dependent crystal blurring effects.

A more accurate approach [10] has been to collectively

model inter-crystal scattering, penetration as well as photon

non-collinearity in the projection space component W of the

system matrix. Monte Carlo simulations were then needed to

be performed along a projection angle to extract the overall

blurring kernels. The result were then assumed to apply to all

other 2D projection angles.

An alternative approach [5]–[7] was instead to analytically
calculate the angular-dependent inter-crystal penetration effects

for the detector pairs. This resolution modeling method had the

advantage that due to its analytical nature, was not ad hoc in
nature and additionally made use of no simulations or experi-

mental measurements. However, it neglected contributions due

to crystal scattering, and only incorporated crystal penetration.

A new approach has been to make very accurate non-

collimated [8] and collimated [9] point source measurements in

the field-of-view (FoV) to extract the overall system matrix in a

very elaborate manner. While the method results in impressive

improvements in image quality, it requires extensive and very

accurate point source measurements (e.g. using a positioning

robot as done by the authors).

A new approach is investigated in this work, which takes

the approach of analytically modeling each of the resolution

degrading phenomenon, followed by their combination in the

overall system matrix, thus not requiring extensive simulations

or experimental measurements, and producing significantly

improved image qualities. We describe each of these next.

II. DESCRIPTION OF METHOD

A. Positron Range
In the seminal work of Palmer and Brownell [11], a model of

positron range was developed, and shown to closely agree with

experimental [12] as well as simulated [13] results. It must be

noted that since experimental measurements of positron range

are performed in the projection space, the results are often

depicted in that space. At the same time, to accurately model

the effect of positron range in the reconstruction task, we must
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Fig. 1. The Rb-82 positron range, upon binning into appropriate voxels, is
well-fit by a bi-exponential curve, as shown in this figure.

use the image-space component (B in Eq. 1) of the system

matrix, since its elements model inter-voxel contributions. As

such, the fully 3D model of positron range was used in this

work. This can be summarized as follows (which has been

similarly incorporated in the simulation package SimSET [14]):

for an isotope with an atomic number Z and endpoint energy
Emax, the positron emission energy distribution N(E) is given
by:

N(E) = (Emax − E)2WpF (Z, W ) (2)

where E is the emission energy in MeV, W=1+E/0.511,
p=

√
W 2 − 1, and

F (Z, W ) =
2πη

1 − e−2πη
; η =

−ZW

137p
(3)

In the particular case of Rb-82, two end point energies exist

(Emax
1 =3.379 MeV and Emax

2 =2.603 MeV with branching ra-

tios of 0.833 and 0.117; note that Eq. 2 must be first normalized

prior to weighted summation for these two energies).

For a given emitted positron energy E, the annihilation
density is then modeled [11] as a 3D symmetric Gaussian:

D(r, E) =
1(√

2πσ(E)
)3 e−|r|2/2σ(E)2 (4)

σ(E) =
Rex(E)

2d
(5)

where d is the density (in g/cc) of the material the positron is
traveling through, and Rex is the extrapolated positron range,

which for a material with an effective atomic weight Aeff and

atomic number Zeff is given by

Rex(E) =
b1E

2

b2 + E
(6)

b1 =
4.569Aeff

Z1.209
eff

; b2 =
1

2.873− 0.02309Zeff
(7)

Values of Aeff and Zeff for biological materials are relatively

similar (for water: Aeff=13.00; Zeff=7.217). We may finally

compute the overall 3D distribution D(r):

D(r) =

∫
D(r, E)N(E)dE (8)

In our application of interest (Rb-82), the resulting distribution

was then binned into voxels and then fit by a bi-exponential

curve, as depicted in Fig. 1, which is subsequently used in

definition of the system matrix.

B. Photon Non-collinearity
Due to small residual momentum of an emitted positron

when it reaches the end of its range, the annihilated photons

will exhibit non-collinearity. The angular distribution is approx-

imately gaussian with FWHM of≈ 0.5◦. Technically, this effect

has to be modeled in the geometric component G of the system
matrix; however, as an approximation to considerably simplify

the system matrix computation, one can assume photon non-

collinearity is depth-independent and model it in the projection-

space component W of the system matrix. The effect of blur-

ring on spatial resolution using simple geometric calculations

can be shown to be given by a gaussian with

FWHM = 0.5
π

180
× L

4
= 0.0022× L (9)

where L is the separation of the detector in coincidence, thus
arriving at the non-collinearity blurring kernel Dnon−col.(x, z)
along the radial x and axial z directions. Since this effect is
independent from the crystal blurring effects, once those are

extracted, they are convolved with Dnon−col.(x, z). This will
be discussed next.

C. Inter-crystal scatter and penetration
In the present work, we have assumed (as studied below)

that the inter-crystal scatter and penetration effects can be

separately modeled and then convolved with one another. First,

the penetration effect can be modeled using a knowledge of the

511-keV attenuation coefficient μ of the crystals, as well as the
angle of incidence θ. As such, the 1D deposition distribution
p(x, θ) tangential to the detector surface is given by:

p(x, θ) = e−μx/sin(θ) (10)

Then, from the individual detectors’ penetration model p(x, θ),
the resulting penetration distribution Dpenet.(x, θ) for the co-
incidence pair can be calculated, as similarly done in [5], [6],
and is given by:

Dpenet.(x, θ) =

∫
x′

p(x′, θ)p(2x − x′, θ)dx′ (11)

Next, an assumption has been that it is the penetration effect

(and not the scatter) that is highly angular-dependent, and

for the latter we used measured projection data of a point

source at the centre of the FoV (thus no parallax contribution),

and determined the average radial and axial scatter blurring

introduced by the scanner in the sinogram-space (we corrected

for the non-collinearity effect via subtraction in squares), to

arrive at an estimate of Dscatter(r, z). Finally, in the present
work, we arrive at the overall projection-space blurring kernel

Dproj.(x, z) via performing:

Dproj.(x, z, θ) = Dnon−col.(x, z)∗Dpenet.(x, θ)∗Dscatter(x, z)
(12)

where ∗ indicates a convolution.
Simulations: To study the separate modeling of inter-crystal
scattering and penetration effects, we utilized the MCNP4C

Monte Carlo code for detailed transport of 511keV photons

originated from a point source at various angles of incidence

θ from 0 to 45◦ (total of 50000 photons). We then performed
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(a) θ=15◦ (b) θ=30◦ (c) θ=45◦

Fig. 2. Simulated crystal absorption profiles, shown here for photons incident
at the crystal 5,4 (of a simulated 9x6-crystal block) at θ values of (a) 15◦, (b)
30◦ and (c) 45◦.

(a) θ=15◦ (b) θ=30◦ (c) θ=45◦

Fig. 3. Crystal absorption profiles calculated as described in text with standard
μ=0.0755mm−1 .

convolution operations between the penetration distributions at

various angles (calculated using μ=0.0755 (LYSO) in Eq. 10)
and the scattering distribution (obtained at normal incidence)

to arrive at overall estimate inter-crystal blurring kernels. Com-

pared to the actual simulated blurring kernels, some mismatches

can be observed as depicted in Figs. 2 and 3; in particular, the

extent of contamination to nearby crystals appears underesti-

mated. This is because we have observed (not shown) through

these simulations that the scattered distribution is not symmetric
and that it exhibits more scatter contributions in the direction

of incidence.

There are a number of approaches to better model this effect:

one may consider the use of asymmetric, angular-dependent

scattering kernels as a solution. Another solution is to use a

smaller μ value for the calculation of the parallax effect in
order to effectively model the additional scatter contribution in

the direction of incidence. Using a smaller μ=0.045 as shown
in Fig. 4, overall distributions closely matching the simulated

distribution (Fig. 2) were observed. In the present work, we

have continued to use the standard μ=0.0755, while in the
future, alternative approaches will be explored.

(a) θ=15◦ (b) θ=30◦ (c) θ=45◦

Fig. 4. Crystal absorption profiles calculated similar to Fig. 3 but instead
using μ=0.045mm−1 .
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(a) standard (b) proposed
Fig. 5. (a) Improvements in resolution across the FoV is apparent upon
inclusion of the proposed resolution modeling approach.

D. Resolution Modeled Reconstruction Algorithm
For compact representation [1], we use �s=[s1...sJ ]tr,

�n=[n1...nJ ]tr, �λm=[λm
1 ...λm

J ]tr to denote 1D vectors of im-
age sensitivity, projection data and image intensity (estimated

at iteration m), respectively (tr denotes the transpose). The
standard EM algorithm is then written as:

�λm+1 =
�λm

�s
× P

tr

{
�n

P�λm

}
(13)

where vectorial multiplication and division operations are per-

formed on an element-by-element basis. Upon substitution of

Eq. (1) into the EM algorithm, this becomes:

�λm+1 =
�λm

�s
× B

tr
G

tr
W

tr

{
�n

WGB�λm

}
(14)

and the sensitivity image is given by �s = B
tr
G

tr
W

tr�Π where
�Π refers to a vector of all-ones.

III. METHODS, RESULTS AND DISCUSSION

Tomograph: Data were simulated for and acquired on the
Discovery RX PET/CT scanner [15]. The scanner uses LYSO

crystals of dimensions 4.2×6.3×30 mm in the tangential, axial,
and radial directions. The LYSO crystals are arranged into 9x6

blocks, and the scanner contains 24 rings and 630 crystals per

ring.

Reconstruction: An OSEM reconstruction code was devel-
oped for the scanner, which in its non-resolution-modeling

mode, highly resembled the performance of the standard clini-

cal reconstruction software. Normalization and attenuation were

incorporated in the system matrix, while estimated randoms

and scattered events were incorporated in the denominator of

the OSEM algorithm, with the images finally scaled by global

decay and deadtime factors.

Point Sources: A Na-22 point source was placed at six posi-
tions radially across the FoV (from the center to x=25cm, each

separated by 5cm), imaged for 3 minutes in each position, and

reconstructed using different methods. The measured FWHM

widths are shown in Fig. 5. It is clearly seen that the proposed

resolution modeling significantly improves the resolution, and

also results in better resolution uniformity across the FoV.

Contrast Phantom: To simultaneously study the effect of
the proposed approach on both contrast and noise, a Jaczcak

phantom was scanned, with 4 hot spheres (diams. of 25, 16,

12 and 8 mm, hot:background=4:1, F-18 was used) and 3 cold
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Fig. 6. Comparison of percent contrast vs. noise for the 4 hot and 3
cold inserts, for standard (solid) and proposed resolution-modeled (dotted)
reconstructions (measurements are shown for the first five iterations).

sphere (25cm, filled with water, air, teflon). Plots of percent

contrast vs. noise are shown in Fig. 6, and clearly demonstrated

improved trade-off curves.

Simulation of Rb-82 Cardiac Imaging: The NCAT phantom
was used in combination with the combined SimSET/GATE

package to perform realistic simulations of Rb-82 cardiac

imaging in the Discovery RX scanner, while the organ activity

ratios with respect to the heart uptake were determined based on

clinical cardiac PET studies (average of 12 patients at stress).

We ran the simulation with the positron decay number nearly

equivalent to a 12 sec acquisition (without gating) after the

input function peaked.

The reconstructed percent contrast between the myocardium

and stomach are plotted in Fig. 7 against the calculated noise

(normalized standard deviation of voxels) in the myocardium.

Without modeling Rb-82 positron range (i.e. only modeling

non-collinearity, crystal scattering and penetration), we already

see noticeable improvements in the contrast vs. noise trade-off,

while the curves are further improved upon inclusion of the

Rb-82 positron range model.
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Fig. 7. Plots of contrast vs. noise for each of the 5 iterations of the various
methods. The proposed methods, especially when also incorporating the Rb-82
model, show significant improvements in the trade-off curves.

For visual inspection, some reconstructed slices are also

shown in Fig. 8 for the conventional approach (2 iterations) and

the proposed method without and with positron range modeling

(5 iterations each). It can be seen that the resolution modeled

methods (especially the one with the Rb-82 model) result in

less noisy images compared to two iterations of the standard

method, while additionally better contrast can be detected (as

also quantitatively demonstrated in Fig. 7).

In conclusion, the proposed analytic modeling approach

was shown to result in images of significantly higher quality.

Point- and extended-source phantom studies showed improved

resolution, resolution uniformity, contrast and noise in the

(a) transaxial (b) coronal (c) sagittal
Fig. 8. Slices through images reconstructed using (top) the conventional
approach (2 iterations), (top) the proposed method without positron range
modeling (5 iterations), and (bottom) the proposed method while also modeling
Rb-82 positron range (5 iterations). No post-smoothing has been used.

images. For the particular application of Rb-82 cardiac imaging,

images of significantly higher quality and quantitative accuracy

were obtained.
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